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Abstract-The objective of the present study is the development 
of an automated computerized system that will assist the early 
diagnosis of fetal hypoxia. We demonstrate that it is possible to 
distinguish between healthy subjects and acidemic fetuses by 
way of wavelet transform analysis of the fetal heart rate 
recordings and fetal pulse oximetry (FSpO2). We focus on the 
values of the standard deviation of the wavelet components (up 
to scale index 5) and we apply Self-Organizing-Map in order to 
investigate the relationship between the fetal heart rate 
variability in different scales and FSpO2 (taking as a threshold 
for the FSpO2, the 30% level and considering the minimum 
value of FSpO2 during a 10-minute segment) for normal and 
acidemic fetuses during the second stage of labor, which can be 
used to discriminate acidemic fetuses from normal ones. A total 
accuracy of 91% has been achieved, enabling us to correctly 
classify all the normal cases (but one) as belonging in the 
normal group and all pathologic cases (but two) as belonging in 
the acidemia group, therefore providing a clinically significant 
measure for the discrimination of the different groups. Fetal 
pulse oximetry seems to be an important additional source of 
information. 
Keywords – Fetal heart rate monitoring, fetal pulse oximetry, 
fetal hypoxia, wavelet analysis, neural network 

 
I. INTRODUCTION 

 
During the last decades, fetal heart rate (FHR) 

monitoring has been widely used for intra- and antepartum 
monitoring and assessment of fetal well-being. It is 
commonly used as a screening modulus of the fetes to detect 
in advance possible fetal problems that could result in 
irreversible neurological damage or even fetal death during 
labor. Although it has been proved to be a useful tool for the 
obstetricians, suspicious FHR patterns lack specificity and 
false positive FHR traces may result in unnecessary 
intervention increasing the caesarian section delivery rate. 
More recently, non-invasive techniques such as reflectance 
pulse oximetry with continuous recording of functional 
oxygen saturation of fetal arterial blood during active labor 
appear to develop into an important additional source of 
information about fetal status, especially in cases of non-
reassuring fetal heart rate patterns. 

In recent years, several attempts have been made to 
automate the diagnosis of the fetal status. Computerized 
algorithms, artificial neural networks and hybrid 
architectures have been developed and validated in order to 
assess the fetal heart rate parameters (baseline of the fetal 
heart rate, accelerations and decelerations, etc.). Our method 
is based on the Heart Rate Variability (HRV) analysis and 
on the statistical analysis of fetal pulse oximetry (FSpO2).  

It has been evident that there is a significant relationship 
between the autonomic nervous system and cardiovascular 
mortality even before birth [1]. The development of 
quantitative markers of the autonomic activity has been 
encouraged by experimental evidence and HRV represents 
one of the most promising such markers. Many commercial 
devices now provide automated measurement of HRV, 
providing the physician with a seemingly simple tool for 
both research and clinical studies.  

The clinical relevance of HRV was first appreciated in 
1965 when Hon and Lee [2] noted that fetal distress was 
preceded by alterations in interbeat intervals before any 
appreciable change occurred in the heart rate itself. Later on, 
Sayers and others focused their attention on the existence of 
physiological rhythms embedded in the beat-to-beat heart 
rate signal [3-6]. In 1981, Akselrod et al. [7] introduced 
power spectral analysis of heart rate fluctuations using Fast-
Fourier Transform (FFT) and pointed out the relation 
between the activities of the autonomic nervous system and 
the low-frequency (LF) and high-frequency (HF) peaks of 
the frequency domains. Since then, frequency analysis of 
heart rate fluctuation has been performed widely [8] and 
applications to fetal distress have been attempted [9-12]. 
Most of these studies are based on the application of FFT 
and Autoregressive Modeling (AR). However these 
algorithms have limitations in the study of long-term non-
linear variations of heart rate as well as in the analysis of 
transient alterations of heart rate. Since the fetal heart rate 
shows a long-term nonstationary behavior [13], the 
application of the above methods is not very effective. 
Wavelet analysis [14-20] has proved to be one of the most 
successful techniques for the analysis of signals at multiple 
scales, even when nonstationarities are present, which often 
obscure such signals [21-22] and has rendered many 
successful applications in the area of biomedical signal 
processing [23-24]. Ivanov et al. [25] used wavelet 
transform (WT) to study the temporal fluctuation of the high 
frequency component of the heart rate fluctuation. Later, 
Thurner et al. [26] used a similar procedure and focused on 
the values of the wavelet coefficients variance rather than on 
the scaling exponent of the WT. 

Continuous electronic fetal monitoring (EFM) was 
incorporated in clinical obstetrics in the late 1960s. It still 
remains the accepted method of intrapartum fetal monitoring 
in high-risk pregnancies. However, debate is still unsettled 
regarding the benefits of EFM as opposed to intermittent 
auscultation in labor. Prospective studies in both term and 
preterm infants have consistently failed to show lower rates 
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of perinatal mortality and morbidity in labors monitored by 
EFM as compared with those monitored by intermittent fetal 
heart rate auscultation. Furthermore, suspicious FHR 
patterns lack specificity and false positive FHR traces may 
engender unnecessary intervention. Meta-analyses of the 
trials of the use of intrapartum EFM versus intermittent 
auscultation show that EFM, with or without adjunctive fetal 
acid-base assessment, is associated with a significant 
increase in caesarean delivery and instrumental vaginal 
delivery of fetal distress. This increase in operative delivery 
is not associated with improved neonatal morbidity or 
mortality, except in labors associated with the use of 
oxytocin and in prolonged labor, where there were more 
infants with neonatal seizures in the intermittent auscultation 
group compared with the more intensively monitored group. 
The cost effectiveness and possibility of increasing the 
caesarean delivery rate without any substantial fetal benefits 
leads one to question the use of EFM in low risk labor [27]. 

There is evidently a need to improve intrapartum fetal 
surveillance. The ideal system of fetal monitoring, one that 
is safe, direct, continuous and non-invasive, with acceptable 
sensitivity and specificity has yet to be determined. Pulse 
oximetry has been used extensively in the fields of 
neonatology, adult intensive care and anesthesia. 
Considering its successful application in these fields, it 
would seem logical to extend its use in the area of 
intrapartum fetal surveillance. Much research has gone into 
evaluating fetal pulse oximetry, its safety, accuracy and 
reliability in predicting neonatal outcome. There have been 
several studies conducted correlating the fetal heart rate 
patterns and the FSpO2 [28].  

In this study, we use the WT of the fetal HRV and we 
apply Self-Organizing-Map (SOM) in order to investigate 
the relationship between the fetal HRV in different scales 
and FSpO2 (taking as a threshold value for the FSpO2 
measurement the 30% level and calculating the distance 
between the threshold and the minimum value of FSpO2 
during a 10-minute segment) for normal and acidemic 
fetuses during the second stage of labor, which can be used 
to discriminate acidemic fetuses from normal ones. Our 
system accepts as inputs the fetal heart rate recording and 
the FSpO2 measurements. Pre-processing and artifact 
elimination takes place. Wavelet analysis is applied on 10-
min fetal heart rate segments and certain parameters 
(standard variation of the wavelet coefficients) are 
estimated, which together with the FSpO2 measurements 
comprise the inputs to the SOM neural network. The flow 
chart of the analysis is shown in Fig. 1.  

 
II. METHODOLOGY 

A. Data Collection 
 
Data were collected from thirty-five (35) women during 

labor, which took place in the Labor Ward of the 2nd 
University Clinic of Obstetrics and Gynecology at 
Aretaieion Hospital of Athens. All women gave informed 
consent to this study. Twelve (12) cases, in which pH was 
lower than 7.2 and Apgar score < 9 were grouped together 

in the risk group. The rest of the women formed the normal 
group. The Cardiotocogram (CTG) and the FSpO2 have been 
recorded during labor using the Corometrics Series 120 
Cardiotocograph combined with fetal pulse oximeter. The 
duration of the second stage of the labor ranged from 20 to 
50 minutes.  

The fetal heart rate is measured externally. A transducer 
placed on the mother's abdomen is used to direct an 
ultrasonic beam toward the fetal heart and to sense Doppler 
shifted echoes created by moving cardiac structures. The 
sampling frequency was 1 Hz. 

The percentage of the functional oxygen saturation of 
fetal arterial blood (FSpO2) is measured non-invasively by 
applying the Nellcor Puritan Benett (NPB) fetal oxygen 
sensor to the cheek/temple area of the fetal head.  
 
B. Pre-processing Stage 

 
The active (second) stage of each case was divided into 

10-minute segments (600 values of FHR). Artifacts have 
been removed from both the FHR signal and the FSpO2. 
Abrupt changes of FSpO2 were removed and linear 
interpolation was employed, when the duration of the 
artifact was below a certain value.  
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Fig. 1. Flow chart of the analysis. 

 
C. Wavelet Based Analysis 

 
We applied wavelet multiresolution analysis for each 10-

minute segment in order to address the problem of long-term 
nonstationary behavior of the fetal heart rate tracings and to 
estimate the power in different frequency ranges. The multi-
scale feature of the wavelet transform allows the 
decomposition of a signal in to a number of scales, each 
scale representing a particular 'coarseness' of the signal 
under study [15]. This essentially decomposes the signal 
into a set of signals of varying 'coarseness' ranging from low 
frequency components progressively to high frequency 
components. Thus, if one can make some decision 
concerning the underlying frequency components of the 
signal, one may choose the appropriate scale in the wavelet 
transform, whilst ignoring the contribution of the other 
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scales. This decomposition of the signal into different scales 
is particularly useful if the wavelet transform is performed 
on an orthogonal basis.  

The used mother wavelet was Daubechies 20 – tap. The 
decomposition was performed up to scale index 5. For each 
scale, we have calculated the wavelet coefficient standard 
deviation σwav(i), where i is the scale index. σwav(1) and 
σwav(2) were excluded from further analysis, because we 
haven't noticed any significant difference between normal 
and acidemic groups. σwav(5) was excluded from further 
analysis, because according to Ze-Yan Yu et al. [29], there 
is uncertainty as to the physiological significance of changes 
in power in the corresponding frequency range, and we also 
wanted to focus on the power that corresponds to the 3rd an 
4th scale of analysis (associated frequencies 0,08 and 0,04 
Hz respectively). 

 
D. Statistical Analysis of FSpO2 

 
For each 10-minute segment we calculated the 

percentage of time in which the FSpO2 was less than 30% 
(SpO230).    

We also calculated the distance between the lowest value 
of FSpO2 in the 10-minute segment and the 30% threshold 
(dist(30-minFSpO2)).    
 
E. Classification using SOM Neural Networks 

 
In order to categorize the different 10-minute fetal heart 

rate patterns, we used the Self-Organizing Map (SOM) 
neural network with the Kohonen learning rule [30]. Such a 
network consists of two layers: an input layer and a two-

dimensional output, Kohonen layer. Self-organizing maps, 
also called topology-preserving maps, assume a topological 
structure among the cluster units. They learn to recognize 
groups of similar input vectors, in such a way that neurons 
physically near each other in the neuron layer respond to 
similar input vectors. During the self-organization process, 
the cluster unit whose weight vector matches the input 
pattern most closely (typically, the square of the minimum 
Euclidean distance) is chosen as the winner. The winning 
unit and its neighboring units (in terms of the topology of 
the cluster units) update their weights. In this way, a 
mapping process takes place; input data vectors with similar 
features are mapped into the same area of the SOM. 

The input vectors are the following: σwav(3), σwav(4), 
SpO230 and dist(30-minFSpO2). After training the self-
organizing neural network, we calculated the U-matrix, 
which shows the distance between neighborhood units as 
well as the median distance from each map unit to its 
neighbors, and the corresponding projection matrices.  

  
III. RESULTS 

 
Fig. 2 visualizes the U-matrix and the projection 

matrices of the input parameters σwav(3), σwav(4), SpO230 and 
dist(30-minFSpO2). As we can see in the figure, the lower 
right part of the U-matrix is separated from the rest and in 
this area FSpO2 is very low. We can also observe that the 
percentage of time in which the FSpO2 was less than 30% is 
high in this area. The same holds for the distance between 
the minimum FSpO2 value and the 30% threshold (the above 
can be also observed from the corresponding projection 
matrices).  

 
 
 

 
 

Fig. 2. Visualization of the U-matrix (top left) and the projection matrices of the input parameters.  
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σwav(3) remains in high levels (lower left corner of its 
correspondent projection matrix) in the area where FSpO2 is 
low, while σwav(4) which corresponds to the power of 0,04 
Hz diminishes faster.  

Fetal pulse oximetry is very important for the 
classification of the fetal heart rate recordings and the 
consideration of the distance between the minimum FSpO2 
value and the 30% threshold as an input to the neural 
network enhances the accuracy results. 

10-minute segments of ten (10) cases that they have low 
pH  (<7.2) and low Apgar score are included in this area and 
only one 10-minute segment of a normal case is also 
included (being though only in close to the borderline).  

In order to characterize the performance of the neural 
network, the sensitivity (SE), specificity (SP), and accuracy 
(A) were calculated and their values are the following: 

SE = 83%, SP = 96%, A = 91% 
 

IV. DISCUSSION & CONCLUSION 
 

We have applied wavelet analysis, since it addresses the 
problem of long-term nonstationary behavior of fetal heart 
rate. The calculation of the standard deviation of the wavelet 
coefficients enables us to extract information about the 
power in the different scale levels from the fetal heart rate 
recordings, which in combination with the fetal pulse 
oximetry is used as input to the SOM neural networks for 
the categorization of the fetal heart rate patterns.  

Fetal pulse oximetry seems to be an important additional 
source of information. Not only the time in which the FSpO2 
was less than 30%, but also the minimum value that FSpO2 
reaches play an important role in the classification of the 
patterns, especially in the cases of non-reassuring fetal heart 
rate patterns.  

We believe that computerized analysis of the fetal heart 
rate monitoring and pulse oximetry recordings based on the 
combination of wavelet analysis and artificial neural 
networks is a very promising technique in objective 
intrapartum diagnosis of fetal hypoxia. Further evaluation of 
this technique is mandatory to evaluate its efficacy and 
reliability in interpreting fetal heart rate records. 
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